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Abstract

The accurate determination of the Mars pole vector derived from Path®nder and Viking Lander radio data (Folkner
et al., 1997. Science 278, 1749±1752), together with the VSOP87 representation of planetary orbits (Bretagnon and Francou,

1988. Astron. Astrophys. 202, 209±315), have been applied to a new evaluation of the right ascension of the ``Fictitious
Mean Sun'' (FMS) at Mars. With DtJ2000 the elapsed time in days from the J2000 epoch (JD 2451545.0TT),
aFMS=2708.3863+0.5240384(8/d)�DtJ2000ÿ4 � 10ÿ13(8/d2)�Dt2J2000 represents a best least-squares quadratic ®t of the FMS,
including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the

calendar years 1874±2126. The implied tropical orbit period for Mars, 686.9726d, closely agrees with the recent evaluations by
SuraÂ n (1997. Planet. Space Sci. 45, 705±708) and Allison (1997. Geophys. Rev. Lett. 24, 1967±1970). Together with the
Path®nder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or ``sol'')

of 1.02749125d. The new FMS determination would serve to de®ne the Mean Solar Time at Mars to the nearest tenth-second,
according to historical conventions originally established for terrestrial time-keeping, once the Mars prime meridian de®ned by
the crater Airy-0 is determined within inertial space to the same accuracy. For convenient reference to current epochs, 2000

January 06 00:00:00 UTC (=MJD 51549.000UTC) corresponds to a coincidence of aFMS and the rotation angle of the crater
Airy-0 measured with respect to the Mars equinox (i.e. ``mean solar midnight'' on the planet's prime meridian), to within the
current uncertainty in the locational de®nition of the planet's cartographic grid. As a further result of the analysis, the

consistently derived Mars obliquity of date is E=258.192+3.45 � 10ÿ7(8/d)�DtJ2000. An improved analytic recipe for the
calculation of the solar areocentric longitude (LS) of Mars to an accuracy better than 08.01 is also provided, accounting for the
primary perturbations of Earth, Jupiter, and Venus, which may in turn be applied to an e�cient evaluation of Mars Local True
Solar Time (LTST) to within the uncertainty of the inertial position of the Mars prime meridian. For speci®c applications to the

data archives for landed Mars spacecraft, simple conversion formulae are given for the determination of the Viking ``Local
Lander Time'' and the Path®nder ``Local True Solar Time'' in terms of the terrestrial calendar date and UTC. # 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Mars, more than any other planet in the Solar Sys-

tem, exhibits a pronounced and pervasive response to
both its diurnal and seasonal modulation of tempera-

ture, wind, and surface pressure, with attendant vari-
ations in water vapor, atmospheric opacity, boundary
layer, ground frost, and polar caps. The radiative cool-
ing time of the Mars atmosphere is more than an
order of magnitude shorter than that for the Earth
and the eccentricity of the Mars orbit is over ®ve times
larger. The fast radiative cooling time and the approxi-
mate alignment of the Mars northern winter solstice
with the planet's perihelion imply an exaggerated re-
sponse to solar forcing. The hourly and seasonal tim-
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ing of the apparent solar position on the planet is
therefore a critical issue for Mars geophysical/climate
studies, as attested by various reports of Lander space-
craft data in reference to both the areocentric solar
longitude and the ``local Lander time'' (e.g. Colburn et
al., 1989) or the ``true local solar time'' (e.g. Golombek
et al., 1997). Yet the only generally accessible sources
of precise if still provisional de®nitions of Martian
time coordinates appear to be a NASA technical mem-
orandum (Kaplan, 1988) and a single short paper in
the refereed literature (Allison, 1997). The consider-
ation of more accurate de®nitions of Mars solar time-
keeping commends a recollection of the original estab-
lishment of terrestrial chronological standards.

From 1925 until 1959, Greenwich Mean Time was
de®ned as 12 h+the Greenwich hour angle of a point
on the Earth's equator whose right ascension,
measured from the mean equinox of date, was

RS � 18 h 38 m 45 s:836� 86 40184 s:542T1900

� 0 s:0929T 2
1900,

with T1900 the number of Julian centuries of 36525
days elapsed since the epoch of Greenwich mean noon
on 1900 January 0.5. The assumed expression for RS

was that given by Newcomb (1895) for the right ascen-
sion (including aberration) of the ``Fictitious Mean
Sun'' (FMS), an idealized ®ducial reference intended
to match as closely as possible the uniform motion of
the apparent mean solar longitude. Following the re-
alization of the Earth's variable rotation with its
lunar-tidal despinning, a distinction was made between
Ephemeris Time (ET), for which Newcomb's T was
interpreted as the independent variable TE of the
Earth's (tropical) orbital revolution, and Universal
Time (UT), with a variably advancing TU now evalu-
ated in practice by a variety of methods including opti-
cal transit observations of stars, lunar laser ranging,
and Very Long Baseline Interferometry of cosmic
radio sources.

Beginning in 1955, atomic clocks became available
in several countries and since 1971 the accepted inter-
national time standard has been Temps Atomique In-
ternational (TAI), with Terrestrial Time (TT), the
successor to ET, now given as
TT=ET=TAI+32.184 s. (The di�erence
ETÿTAI=32.184 s corresponds to the evaluated
departure DT of Ephemeris Time from Universal Time
on 1958 January 0.) Although the Fictitious Mean Sun
has consequently been abandoned as the basis for pre-
cision time-keeping, Newcomb's mean solar coordinate
formulas served not only the original calibration of the
24-h day, but also the original de®nition of both the
J1900 ephemeris epoch and the ephemeris second.
Although the System International (SI) second is now

de®ned as 9,192,631,770 periods of the hyper®ne tran-
sition of the ground state of cesium-133, this standard
was originally calibrated by Markowitz et al. (1958) to
match the astronomically determined value of the
ephemeris second, itself established in reference to
Newcomb's mean solar coordinate formulas as ``la
fraction 1/31556925.9747 de l'anneÂ e tropique pour
1900 janvier 0 aÁ 12 heures de temps des ephemerides''
(ComiteÂ International de Poids et Mesures, 1957). A
further account of the development of modern time-
keeping standards and their ongoing reform in accom-
modation of general relativistic e�ects is given by Sei-
delmann and Fukushima (1992).

Although there are as yet no internationally
accepted Martian time standards, it may be supposed
that these will eventually be referenced to some appro-
priately accurate determination of the planet's mean
solar coordinates. Provisional determinations of the
FMS at Mars, as recorded in internal o�ce memor-
anda at the Jet Propulsion Laboratory (e.g. Blume,
1986; Lee, 1995), have been applied to the de®nition of
local solar time for Mars spacecraft operations and
data archival. These have been based on ®ts to compu-
tational ephemerides over short-term intervals compar-
able to their intended use for speci®c ¯ight missions,
however, and are not available in the open literature.
A 33 yr cycle of 008.002 perturbations in the Mars
orbital longitude by Venus, for example, suggests that
a precise and temporarily extensive calibration of the
FMS should be ®tted to at least several tens of orbits.
Allison (1997) presented an independent estimate of
the FMS at Mars as ®tted to 120 orbits, but to a pre-
cision of only 08.01, corresponding to a de®nition of
the Mean Solar Time to within 2.4 s.

It should be acknowledged that any adopted syn-
chronization of ``Mean Solar Time'' is largely a matter
of convenience. As noted by Woolard and Clemence
(1966), ``a measure of Mean Solar Time which would
depart too far from the average of the apparent solar
measure would be inconvenient, and if too discordant
would fail to serve practical purposes satisfactorily,
but still would not be logically erroneous . . . ''. Per-
haps in the not too distance future, Martian Coordi-
nate Time will be established by synchronization to a
landed atomic clock or an ultra-stable rubidium oscil-
lator. But while the calibration of Mars/solar coordi-
nates to the implied milliarc second accuracy of
Newcomb's FMS formula may never be necessary, it
seems appropriate to apply the available data for the
Mars orbit and rotation to an assessment of the pla-
net's FMS to the attempted (08.001) precision of the
IAU de®nition of the rotation elements (Davies et al.,
1996). Meanwhile, the 008.3 discrepancy between car-
tographic and inertial longitudes on Mars (Golombek
et al., 1997) appears to have been largely reconciled by
a new computation of the mapping network (Zeitler
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and Oberst, 1999). The new determination by Folkner
et al. (1997) of the Mars pole vector from Path®nder
and Viking Lander radio tracking data now makes
possible a new calibration of the Fictitious Mean Sun
at Mars over century intervals to a precision of better
than 08.001, as appropriate to the split (0.2) second
de®nition of a mean solar time analogous to terrestrial
conventions. The analysis provides an accurate evalu-
ation of the tropical year and mean solar day at Mars,
as well as a new calibration of the Mars obliquity of
date. The new FMS calibration also serves the ready
evaluation of a simple series representation of the
areocentric solar longitude and related solar illumina-
tion quantities to within 08.01.

2. Planetocentric solar coordinates

Fig. 1 illustrates the de®nition of various planeto-
centric solar coordinates in application to seasonal/
hourly timing. The standard index for planetary sea-
sons is the planetocentric orbital longitude of the Sun
LS, measured eastward along the planet's orbital plane
from its vernal equinox (the instantaneous ascending
node de®ned by the intersection of the planet's orbit
and equator). For the Earth, LS is just the ecliptic
longitude of the Sun. For Mars, LS is commonly

referred to as the areocentric longitude of the Sun.
Hourly solar timing must account for the true solar
right ascension aS while seasonal climate variations are
largely controlled by the planetocentric solar declina-
tion dS. As the indicated legs of the right spherical tri-
angle with hypotenuse LS, these are given as aS 0
tanÿ1(cos E�tan LS) and dS0sinÿ1(sin E�sin LS), where E
is the obliquity (the inclination of the planet's orbit to
its equator).

The di�erence between the right ascension with
respect to the planet's vernal equinox of a given plane-
tary longitude, and the evaluated right ascension of
the true Sun constitutes the measure of ``solar time''.
According to conventional usage, the solar hour angle
or True Solar Time (TST) on the planet, as referred to
some longitude or meridian with a right ascension Vm,
is just (VmÿaS) � (24 h/2608)+12 h, with the 12 h o�-
set added for the placement of local (12:00:00) ``noon''
at the instant when the Sun transits the overhead meri-
dian. While Vm depends only on the (nearly uniform)
planetary rotation and some ®ducial cartographic
reference such as the ``prime meridian'', aS advances
unevenly, both as a result of the planet's eccentric
orbit and the obliquity of its rotational plane.

Mean Solar Time (MST) is established by a math-
ematical formula prescribing the uniform advance of
an imaginary point on the celestial equator known as

Fig. 1. Planetocentric solar coordinates, the Fictitious Mean Sun (FMS), the Equation of Time (EOT) and their relation to the true and mean

orbit anomalies (U an M).
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the Fictitious Mean Sun (FMS). As established for ter-
restrial time-keeping, the FMS is de®ned so that its
angular displacement along the equator from the ver-
nal equinox (V.E.) is matched as closely as possible to
the angular displacement with respect to the V.E.
(including aberration) of a Dynamical Mean Sun
(DMS) moving uniformly along the orbital plane (cf
Woolard and Clemence, 1966; Roy, 1982; Green,
1985).

The position of the DMS along its orbit as
measured with respect to the perihelion is just the clas-
sical mean anomaly M0 (Lÿ$ ), where L is the mean
longitude and $ the longitude of perihelion. As evalu-
ated at a time t after some reference epoch t0, M may
be de®ned as

M � ��t0 ÿ tp� � �tÿ t0��nanom, �1�

where tp � t0 ÿM�t0�=nanom is the indicated time of
perihelion passage for the mean-®tted orbit, with nanom
the mean rate of the motion corresponding to the
anomalistic period tanom=3608/nanom.

The di�erence (nÿM ) between the true anomaly n
measuring the true solar position along the orbital
plane and the mean anomaly is the equation of center.
Then as shown in Fig. 1, the position of the dynamical
mean sun with respect to the V.E. as measured along
its orbit is just the di�erence between the areocentric
solar longitude and the equation of center, and the
FMS is by construction displaced from the V.E. along
the equator by essentially the same amount. [As dis-
cussed by Woolard and Clemence, 1966, there is actu-
ally a very small divergence between aFMS and the
mean solar longitude (of the DMS) owing to a di�er-
ence between the secular variations of the general pre-
cession in right ascension and longitude, as well as an
acceleration of the apparent planetocentric motion of
the Sun. The resulting discrepancy for Earth±Solar
coordinates is only about 2 s in 1000 years, however,
and the same e�ects for areocentric solar coordinates
will be entirely neglected here.] A practical de®nition
of the Fictitious Mean Sun (aFMS) may therefore be
given as

aFMS � LS ÿ �nÿM �: �2�

Since n0M at the instant tp coincident with the peri-
helion passage, the right ascension of the Fictitious
Mean Sun at that point is just the areocentric solar
longitude at perihelion. At other times t, or after some
interval (tÿt0) from the epoch t0,

aFMS � LS�tp� � ��t0 ÿ tp� � �tÿ t0��ntrop, �3�

where ntrop is the rate of the apparent ``tropical'' mean
motion of the Sun corresponding to a tropical period
ttrop=3608/ntrop. To the extent that it appropriately

serves the accuracy of a particular ®t to the Fictitious
Mean Sun as calculated from the orbital ephemerides
and a speci®cation of the planet's polar precession, the
slow variation of the tropical rate itself can be rep-
resented as in Newcomb's terrestrial formula by an
expanded polynomial time series, with aFMS � aFMS�t0�
� ntrop�tÿ t0� � �dntrop=dt� � �tÿ t0�2 � � � �, where
aFMS�t0� � LS�tp���t0ÿ tp�ntrop:

As the form of (3) suggests, a rudimentary cali-
bration of the FMS can be established by a ®t to the
evaluated areocentric solar longitude at successive peri-
helia over some number of planetary orbits. This was
essentially the method adopted by Blume (1986) on
behalf of the Mars Observer project, taking a linear ®t
to LS(tp) as calculated by the JPL ephemerides for the
epochs of the Mars perihelion in the years 1990, 1992,
and 1994. A similar method was adopted by Lee
(1995) for the Mars Surveyor Project, ®tting the FMS
rate (or tropical mean motion) to successive passages
of the Mars vernal equinox for the years 1996, 1998,
2000, and 2002, then calibrating the FMS angle at a
particular epoch by its consistent evaluation for an
average of the areocentric longitude at the successive
Mars perihelia in 1996, 1998, and 2000. These
approaches to the FMS determination have the advan-
tage of avoiding any explicit reliance on the classical
mean orbital elements, and re¯ect a small but signi®-
cant di�erence between ntrop and nanom as apparent
even over a small number of orbits. Aside from the
limits of these ®ts to their assumed short temporal
intervals and their apparent neglect of aberration,
however, these approaches do not in principle take the
most accurate account of a very small variation for the
seasonal repetition of di�erent values of the LS, as
evaluated below.

Alternatively, aFMS can be ®tted to its de®nition by
(2) from an ephemeris calculation of the time of LS for
di�erent seasons and over several orbits, together with
the corresponding evaluation of the equation of center.
By a classical result of celestial mechanics for the two-
body Kepler motion, (nÿM ) may be e�ciently evalu-
ated by a Fourier±Bessel series for the mean anomaly
and the orbital eccentricity e. By a truncation to sixth-
order in e, for example, of the results given by Ta�
(1985):

�nÿM � � �2eÿ 1
4 e3 � 5

96 e5� sin M

� �54 e2 ÿ 11
24 e4 � 17

192 e6� sin 2M

� �1312 e3 ÿ 43
63 e5� sin 3M� �10396 e4 ÿ 451

480 e6� sin 4M

� �1097960 e5� sin 5M� �1223960 e6� sin 6M�O�e7�:

�4�

Given an accurate determination of both aFMS and M
as a function of time, (2) and (4) also provide a mod-
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erately accurate recipe for LS, excluding the N-body
perturbations by other solar system objects on the pla-
net's Kepler motion about the Sun, as considered in
succeeding sections of this paper.

The di�erence (aFMSÿaS)=ÿ[(nÿM )+(aSÿLS)] is
the Equation of Time (EOT), also representing the
di�erence between the True Solar Time (TST) and the
Mean Solar Time (MST). The di�erence between the
true solar right ascension and the planetocentric solar
longitude (aSÿLS), referred to by Smart (1962) as the
reduction to the equator, can be evaluated by the
rapidly converging series

aS ÿ LS �
X1
n�1

1

n

�
ÿ tan 2 E

2

�n

� sin�2nLS�

1
�
ÿ tan 2 E

2
sin 2LS � 1

2
tan 4 E

2
sin 4LS

ÿ 1

3
tan 6 E

2
sin 6LS

�
:

�5�

Given LS, this a�ords an accurate and e�cient evalu-
ation of aS, and therefore with (4) the EOT, without
the need to test for the proper quadrant of the inverse
tangent in the spherical trigonometric de®nition of the
true solar right ascension (and the tangent in®nities at
LS=90 and 2708). For a non-vanishing obliquity, aS<
LS between each equinox and the succeeding solstice,
while aS> LS between each solstice and the succeeding
equinox.

For some purposes it is also useful to develop a rep-
resentation for the true anomaly in terms of the seaso-
nal index. Upon the elimination of aFMS and M
between (1), (2) and (3),

n � LS ÿ �LSP�t0� � nSP�tÿ t0��, �6�
where

LSP�t0� � LS�tp� � �t0 ÿ tp�nSP � aFMS�t0� ÿM�t0� �7�

is the areocentric solar longitude at perihelion as
adjusted to the epoch t0 in proportion to

nSP � �ntrop ÿ nanom� �8�

representing the slow rate of advance of the perihelion
with respect to the equinox, as a result of the planet's
polar precession. Owing to the small value of nSP
(roughly 2 � 10ÿ58/d for Mars), n 1 LSÿLSP(t0) for
short-term intervals about t0, as often assumed for the
evaluation of the time of season by the solution of
Kepler's equation (e.g. Atkinson and Gwynne, 1992;
Badescu, 1998).

An accurate, closed-form representation of the time
of season LS can, however, be derived from the devel-
opment of the orbital element equations presented

here. First solving (2) and (3) for the elapsed time
post-perihelion by the elimination between them of
aFMS, t � tp � �LS ÿ LS�tp� ÿ �nÿM ��ntrop: Then the
equation of center as it appears in this expression can
be evaluated by its second-order expansion in terms of
the true anomaly as �nÿM �12e sin nÿ �3e2=4� sin 2n
(cf Ta�, 1985). Then by (6), sin n � sin�LS ÿ LSP ÿ
nSP�tÿ t0��1 sin�LSÿLSP� � �nSP�tÿ t0�� � cos�LSÿLSP�,
and similarly sin 2n1 sin�2�LS ÿLSP�� � �2nSP�tÿ t0�� �
cos�2�LS ÿ LSP��, and with LS4LS � k � 3608 and �tÿ
t0�4k � ttrop for the kth orbit post t0,

t1tp �
�
LS ÿ LS�tp� ÿ 2e sin�LS ÿ LSP�

� 3

4
e2 sin 2�LS ÿ LSP�

�
ttrop

3608

� k � ttrop

�
1�

�
2e cos�LS ÿ LSP�

ÿ 3

2
e2 cos 2�LS ÿ LSP�

�
nSP

ttrop

3608

�
:

�9�

Although the ``tropical year'' is often loosely referred
to as the average interval from equinox-to-equinox,
ttrop is more precisely understood to be de®ned by the
formula for the geometric mean longitude of the Sun
(cf Soma and Aoki, 1990, p. 157 or Seidelmann et al.,
1992, p. 80 in the new Explanatory Supplement to the
Astronomical Ephemeris ). The small variation of the
exact mean repetition interval for the seasons is recog-
nized, for example, by the four separate formulas
given in Meeus (1991, p. 166) for the occurrence of the
equinoxes and solstices on the Earth. The last term in
(9), multiplied by k, represents an approximate speci®-
cation of the average interval between successive pas-
sages of any season LS for any planet in terms of its
LSP and other orbit parameters. On the Earth, for
example, where e 1 0.0167, LSP 1 2838, nSP 1 4.7 �
10ÿ58/d, and by Newcomb's formula the tropical year
is currently ttrop=(86400/86401.85) � 365.25 1
365.2422d, the average period between successive
occurrences of the vernal equinox (LS=08) is more
nearly �1� �2enSPttrop=3608� cos�LSP��ttrop1365:2423d,
while the period for the northern winter solstice is �1�
�2enSPttrop=3608� cos�2708ÿLSP��ttrop1365:2428d: (More
precisely, the formulas given by Meeus for the Earth's
four seasons imply a mean repetition interval of
365.242374d for the March equinox in the current
epoch and 365.242740d for the December solstice.)

Also of critical importance to both planetary climate
studies and the design of spacecraft power systems is
the true solar distance. This may be e�ciently evalu-
ated in terms of the mean anomaly as
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r=a � 1� 1
2 e2 ÿ �eÿ 3

8 e3� cos M

ÿ �12 e2 ÿ 1
3 e4� cos 2Mÿ 3

8 e3 cos 3M

ÿ 1
3 e4 cos 4M�O�e5�:

�10�

The heliocentric orbital longitude of a planet is
measured from the Earth equinox along the ecliptic to
the node and then along the orbit as n+$, where $ is
the longitude of perihelion. The ecliptic longitude dif-
fers from the orbital longitude by a small quantity,
known as the ``reduction to the ecliptic'', approxi-
mately given as R1ÿ �tan 2 i=2� � sin�2�n�$ ÿ O��,
where i is the orbital inclination and O the longitude
of the orbital ascending node. (For Mars, i 1 18.85
and R is everywhere less than 08.015.) Then with
n=LSÿLSPÿnSP(tÿt0),
leclip1LS � �$0 ÿ LSP�t0�� � �n$ ÿ nSP��tÿ t0�

ÿ �tan 2 i=2� � sin�2�LS ÿ LSP �$0 ÿ O0��,
�11�

where $0 denotes the longitude of perihelion evaluated
at t � t0 and n$ � dn$=dt its time-linear rate of
change. Speci®c applications of this formula or com-
parisons with an accurate computational ephemeris
must take account of the intended frame of reference
for the ecliptic and equinox as this a�ects the secular
rates for $ and O. The Astronomical Almanac (1985±
2000), for example, tabulates the heliocentric positions
of the planets in reference to the mean equinox and
ecliptic of date, as convenient for Earth-based obser-
vations, while the Multiyear Interactive Computer
Almanac (US Naval Observatory, 1998) calculates
heliocentric positions in reference to the ecliptic and
equinox of J2000.0, as might be preferred for space-
¯ight mission analysis. For the Earth, (11) reduces to
leclip=LSÿ1808.

3. The Path®nder pole vector

The starting point for the new calculation of the

Mars solar seasons is the planet's pole vector. Table 1

provides a comparison of the IAU de®nition (Davies

et al., 1996), as adopted by the Astronomical Almanac,

with the new results of Folkner et al. (1997), based on

a combination of Path®nder and Viking Lander radio

tracking data. a0 and d0 denote the right ascension and

declination of the Mars pole on the celestial sphere

with respect to the J2000 equinox and ecliptic, while a1
and d1 (in the notation of the Astronomical Almanac )

denote the transformation of these coordinates to their

reference with respect to the mean equinox and ecliptic

of date, which we have calculated by standard re-

duction methods (e.g. Meeus, 1991; Hohenkerk et al.,

1992) using the Earth precession constants given by

Simon et al. (1994). The derived time-linear formulas

for a1 and d1 corresponding to the IAU de®nition are

in perfect agreement with the numbers given each year

in the Astronomical Almanac (1985±2000, p. E87), to

within the tabulated accuracy. l1 and b1 denote the

corresponding ecliptic longitude and latitude, again

with respect to the mean equinox and ecliptic of date.

The (centennial) time-linear forms for these correspond

to their ®rst-order evaluated series expansions about

the J2000 epoch. Since the results vary from the

exactly evaluated coordinates, as transformed from the

tabulated expressions for a0 and d0, by as much as

08.0003 for l1 and 08.00004 for b1 for T=21 (Julian

century), it seems sensible to round these as given to

the nearest ten thousandth degree. Our derived forms

for l1 and b1 corresponding to the IAU Mars pole vec-

tor agree, however, to within 08.0005 of their evalu-

ations by Meeus (1991). Although the di�erence of the

new pole vector, as determined from Path®nder radio

tracking, from the IAU de®nition is small, it turns out

to be signi®cant for the discrimination of the Fictitious

Mean Sun (or LS) to the nearest 08.001, as immedi-

ately apparent from a comparison of the correspond-

ing ecliptic longitudes. At the same time, the more

than factor-ten improvement in the accuracy of the

Mars pole vector from the recent analysis by Folkner

et al. (1997) assures the feasibility of a new evaluation

of the Mars FMS to within 08.001.

Table 1

Time-linear coordinate representations of the Mars pole vector, for T0(JD ÿ2451545)/36525, the time in Julian centuries post-J2000

IAU (Davies et al., 1996) Path®nder (Folkner et al., 1997)

Evaluated r.a. and dec, J2000 equinox a0=3178.681ÿ08.108 T a0=3178.68143ÿ08.1061 T

d0=528.886ÿ08.061 T d0=528.88650ÿ08.0609 T

r.a. and dec for mean equinox of date a1=3178.681+08.678 T a1=3178.68143+08.6798 T

d1=528.886+08.351 T d1=528.88650+08.3508 T

Elliptic longitude±latitude mean equinox of date l1=3528.906+18.173 T l1=3528.9076+18.1747 T

b1=638.282ÿ08.004 T b1=638.2820ÿ08.0046 T
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4. Calculation of Mars solar seasons

We have evaluated the Fictitious Mean Sun at Mars
as a least-squares ®t to an ab initio calculation of the
equinox and solstice seasons (LS=0, 90, 180, and
2708) for each of 134 Mars orbits, based on the Path-
®nder pole vector, and including solar aberration. For
this purpose, the Mars heliocentric coordinates, as
referred to the ecliptic and mean equinox of date, were
calculated from two di�erent truncations of the high-
precision VSOP87 representation of planetary orbits,
as given in conveniently coded tabulations by Bretag-
non and Simon (1986) and Meeus (1991). According
to the speci®ed accuracy for truncated representations
of the VSOP87 theory, as described by Bretagnon and
Francou (1988), the ®rst of these yields the Mars helio-
centric longitude to within 08.0025, while the second,
employing a large number of terms, yields a maximum
error of 08.001. Both are therefore entirely adequate to
the derivation of ®tted mean quantities to within a
thousandth degree. (Our evaluated ®ts to the Martian
FMS for di�erent intervals and with the inclusion of
quadratic time dependence suggest that any higher pre-
cision would be critically contingent upon the adopted
integration span and assumed polynomial form.)
VSOP87 appears to be the most sophisticated and
accurate planetary theory for which the long-term
orbital mean elements, as needed for the adopted ®t-
ting method, have been precisely calculated and pub-
lished, along with a systematic evaluation of the
primary perturbations of the other planets (Simon et
al., 1994). These elements have been adjusted to the
numerical DE200 ephemeris developed at the Jet Pro-
pulsion Laboratory (Standish et al., 1992), as also used
by the Astronomical Almanac (1985±2000). Although
DE200 has been succeeded by the more recent DE403
and DE405 versions of the numerical integration,
incorporating newer data for the asteroids, the di�er-
ences are insigni®cant at the 08.001 level. (A compari-
son of osculating elements at 20 year intervals between
1799 and 2100, as kindly supplied by Myles Standish,
reveals no discrepancies larger than 08.0001.) Our
coded representations of the truncated series were
thoroughly tested not only against the examples pro-
vided with their published tabulations, but also by
extensive comparison with the US Naval Observatory
Astronomical Almanac and the associated Multiyear
Interactive Computer Almanac (1998).

As intended for the calibration of the Fictitious
Mean Sun at Mars, no allowance was made for the
light-time appropriate for viewing from the Earth. The
aberration of the Sun as seen at Mars must, however,
be taken into account for the most precise reckoning
of the apparent solar illumination there. In terms of
the heliocentric coordinates l and b, the aberrated
longitude and latitude were calculated as lab=

1ÿ08.00697/r and bab=b ÿ 08.000225 cos(1ÿO)/r,
where r is the heliocentric distance of Mars in AU,
also computed from the VSOP87 ephemerides, and O
the longitude of the ascending node of the Mars orbit,
again referred to the ecliptic and mean equinox date.
Then as in the method outlined on pages 271±276 of
Meeus (1991), we coded a computation of the planeto-
centric solar declination at Mars as dS �
sin ÿ1�ÿsin b1 sin bab ÿ cos b1 cos bab cos�l1 ÿ lab��:
It may be noted that LS cannot be precisely and infall-
ibly calculated from these results as LS0 sinÿ1(sin dS/
sin E ), using a mean element representation for the
Mars obliquity E, since as a result of small planetary
perturbations the argument of the indicated inverse
sine function occasionally exceeds unity, wherever the
maximum dS for a particular orbit exceeds Emean.
Instead, the instance of each vernal and autumnal
equinox was identi®ed with the passage of dS through
08, and the solstices with its corresponding maxima
and minima. The implied minimax search through the
evaluated declinations can be accurately accomplished
for a hundred orbits in only a few hours with a stan-
dard desktop computer.

The Modi®ed Julian Date (MJD0 JD ÿ2400000.5)
for each Mars equinox and solstice passage as calcu-
lated with the Path®nder pole vector over 135 orbits
for the years 1874±2127 are tabulated in the Appendix,
along with the dates for each perihelion passage.
Although they serve as the basis for our ®tted evalu-
ation of the Fictitious Mean Sun, it should be empha-
sized that the given seasonal dates have been
calculated from the truncated VSOP87 ephemeris with-
out any reliance upon mean orbital elements, except
for the very weak dependence of the aberration correc-
tion on the longitude of the ascending node.

5. Planetary perturbations and the meaning of ``mean''

Since 1984, the numerical integration of the
equations of motion for the N-body interactions of the
numerous separately tracked solar system objects has
replaced the former calculation of ephemerides from
planetary theories of perturbed mean elements, as
tabulated in The Astronomical Almanac. As remarked
by Seidelmann and Fukushima (1992), ``a geometric
mean longitude of the Sun does not exist for modern
ephemerides based on a numerical integration''. Mean
element representations for the heliocentric motion of
the Earth and other planets continue to serve several
important applications, however, including observa-
tional scheduling, telescope pointing, and space¯ight
mission planning.

It should be recognized that no ``mean'' quantity
such as the orbital mean anomaly or the FMS has any
precise meaning apart from a speci®cation of its
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assumed ®tting interval, functional formulation, and
reference epoch. As a practical matter, it seems appro-
priate, wherever possible, to estimate the desired mean
quantity over a ®tting interval no smaller than the
temporal span of its intended application. If one or
more short-term oscillations are apparent, it may be
desirable to extend the ®t at least as far as their com-
plete cycles of variation. For some purposes, however,
it may also be desirable to restrict the span of the ®t
to su�ciently short intervals such that the long-term
nonlinear variation of the derived mean quantity rep-
resents only a small or negligible correction to its
otherwise uniform rate of change.

Simon et al. (1994) of the Bureau de Longitudes pre-
sent a high precision tabulation of the classical mean
orbital elements of the planets as de®ned for a span of
26000 yr, including the third-, fourth-, and ®fth-order
time dependence of the longitudes, referenced both to
the ®xed mean dynamical equinox and ecliptic of
J2000 and to the mean dynamical equinox and ecliptic
of date. Their listed classical elements for the ®xed
J2000 equinox and ecliptic of Mars are the same as
those previously reported by Kie�er et al. (1992), as
attributed there to the work of Bretagnon. The

included short trigonometric series representation by
Simon et al. (1994) of the primary perturbations of the
Mars orbital longitude by the other planets provides a
useful context for the considered de®nition of the
appropriate limits to a determination of the planet's
FMS. Fig. 2 shows a plot of the indicated pertur-
bations over three di�erent time spans:210,2100, and
21000 Julian years.

The long period (1748 yr) inequality in longitude
associated with the mutual interaction of Mars,
Earth, and Jupiter, as separately plotted for compari-
son with the short-term perturbations, can be approxi-
mated by its quadratic expansion about J2000 as
LPI 1 08.0130+4.7 � 10ÿ8(8/d)DtJ2000ÿ5.47 � 10ÿ13

(8/d2)Dt2J2000, where DtJ2000 0 JDTTÿ2451545.0 rep-
resents the elapsed time in days post-J2000. This quad-
ratic ®t to the long period inequality, as shown by the
dashed curve in Fig. 2, is accurate to within 08.0001
over 2125 yr. The expression given by Simon et al.
(1994) for the Mars mean anomaly over 26000 yr, as
rounded to comparable precision, is 1198.3728+
0.52402068(8/d)DtJ2000+1.32 � 10ÿ13(8/d2)Dt2J2000: Then
as added to the quadratic approximation to the
long period inequality, M 1 198.3858+0.52402073
(8/d)DtJ2000ÿ4.2 � 10ÿ13(8/d2)Dt2J2000 represents an
appropriately ®tted estimate to the mean anomaly of
Mars for applications within 2100 yr of the current
epoch.

For comparison, the Mars mean anomaly given by
Van Flandern and Pulkkinen (1979) for 2300 yr, as
translated from radians to degrees, is
198.3882+0.52402078(8/d)DtJ2000, within 08.002 of the
value inferred from the augmentation of the elements
given by Simon et al. (1994) by the long period pertur-
bation. Standish et al. (1992) present a table of the
classical Keplerian elements for all nine planets in the
form of the semi-major axis a, eccentricity e, incli-
nation i, longitude of ascending node O, longitude
of perihelion $, and the mean longitude L.
Their values for the Mars L and $ would imply
M=L=ÿ$=198.41248+08.524021165(8/d)DtJ2000.
Nearly 08.04 ahead of the value derived from Simon et
al. (1994), the disparity would appear to re¯ect a
di�erence in the adopted ®tting formulation of this
representation to a Kepler orbit. (The di�erence rep-
resents an approximately 08.02 larger value for the
longitudes of both the perihelion and the ascending
node with respect to the J2000 equinox and ecliptic.) It
is, however, reassuring to note that the implied angular
distance LÿO along the Mars orbit between the
ascending node and perihelion, as given by Standish et
al. (1992), is in agreement to within 08.00013 of that
for the mean elements given by Simon et al. (1994).

As a direct evaluation and check of an appropriate
calibration of the Mars mean anomaly in application
to our ®t of the FMS over 2126 yr, we have also per-

Fig. 2. Mars perturbations in longitude, as evaluated for the short

trigonometric series speci®ed by Simon et al. (1994), the top panel

for 210 yr, the middle panel for 2100 yr, and the bottom panel for

21000 yr. The ordinates of each plot are labeled in degrees longi-

tude. The rapidly varying curves correspond to the superposition of

seven separate perturbation terms with periods between 1 and 33

years plus a long-term inequality associated with the mutual inter-

action of Mars, Earth, and Jupiter. The long-period (1748 yr) vari-

ation in longitude is also separately plotted as the apparent smooth

curve, with its quadratic ®t represented by the thick dashed curve in

the bottom panel.
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formed an original quadratic ®t of M to our calculated
dates of the perihelion passage from the truncated
VSOP87 representations of the orbit. The result
as inferred from the shorter truncation by
Bretagnon and Simon (1986) is M = 198.3843+
08.52402075DtJ2000ÿ5.7 � 10ÿ138Dt2J2000, as compared
with M = 198.3870+08.52402075DtJ2000ÿ5.4 �
10ÿ138Dt2J2000 from the more accurate representation
presented by Meeus (1991), again based on the full
theory developed by the Bureau des Longitudes. These
are each within 08.002 of the long period augmentation
of the elements given by Simon et al. (1994).

It is worth noting at this point that the expression
(4) implies that an error or deviation in the mean
anomaly DM would result in a maximum di�erence
for the evaluated equation of center (nÿM ) of
02e � sin�M� DM � < 2e � DM10:2DM for Mars,
with e=0.0934. An uncertainty or deviation for M no
larger than 08.005, for example, therefore implies an
error everywhere less than 08.001. Since the ®tted
quadratic variation in M amounts to less than 08.001
over the current bicentennial era (spanning the years
1900±2100), the time-linear truncation of the Mars
mean anomaly expression should contribute no practi-
cal error ever larger than about 0.2�DM 1 08.0002 for
the evaluated equation of center (4).

Table 2 speci®es our adopted numerical represen-
tation of the mean orbital elements of Mars. Aside
from our specially ®tted value for M, as appropriate
to its intended application over the contemporary two
century interval, the other elements are taken directly
from Simon et al. (1994), as simpli®ed by their time-
linear truncation and rounded speci®cation to 01 part
in 106 (as for an angular precision of 01 arcsec or
08.0004) over2200 yr.

6. The ®tted Mars FMS and related parameters

Using e and M as given in Table 2 for the evalu-
ation of the equation of center (4), and the instant of
LS=0, 90, 180, and 2708 evaluated as described above

from two di�erent high-precision truncations of the
VSOP87 theory for each of 134 Mars orbits centered
about J2000, we have constructed a quadratic ®t to the
Fictitious Mean Sun angle de®ned by Eq. (2). The
result,

aFMS � 2708:3863� 0:524038408 dÿ1DtJ2000

ÿ 4� 10ÿ138 dÿ2Dt2J2000

�12�

is very nearly the same to the indicated precision as
calculated for both representations of the VSOP87 pla-
netary ephemeris (but with a slightly faster rate vari-
ation of ÿ5 � 10ÿ138 dÿ1 for the more truncated
version). It is also of some interest that the derived ®t
by this method is only weakly sensitive to the con-
sidered small variations among di�erent formulations
of the Mars mean anomaly. Replacing the mean
anomaly formula in Table 2 with that implied by
the Keplerian elements of Standish et al. (1992),
for example, as for DM = 08.0255+0.000000418
dÿ1DtJ2000, the di�erence in the ®tted FMS angle
is only ÿ08.0004ÿ8 � 10ÿ98 dÿ1DtJ2000ÿ3 �
10ÿ148dÿ2Dt2J2000: Small (008.03) variations among
di�erent formulations of the Mars mean anomaly
therefore have an essentially insigni®cant e�ect on the
derived FMS at the thousandth degree level over 2125
yr. The newly determined Mars pole vector by Folkner
et al. (1997) is, however, of signi®cance to the evalu-
ated FMS angle, yielding a value approximately
08.0013 smaller than for the current IAU de®nition,
but of very nearly the same rate of advance, as pre-
sented by Allison (1997). (As a matter of historical
interest, a repetition of the FMS ®t using the pole vec-
tor of Lowell, 1905, as adopted by the Astronomical
Ephemeris prior to 1968, yields an angle over 38 smal-
ler but with the comparable angular rate of approxi-
mately 0.5240408/d.) The included quadratic term for
the new result, while of negligible importance to many
applications, is slightly larger than that in Newcomb's
de®nition of the Fictitious Mean Sun for the Earth
and represents a larger contribution to an evaluation

Table 2

Adopted representation of Mars mean orbital elementsa

Element Symbol Numerical representation (J2000)

Semi-major axis (mean solar distance) a 1.52368 AU

Eccentricity e 0.09340+2.477� 10ÿ9 dÿ1DtJ2000
Mean anomaly M 198.3870+0.524020758 dÿ1DtJ2000
Longitude of ascending node O 498.5581ÿ8.077� 10ÿ68 dÿ1DtJ2000
Longitude of perihelion $ 3368.0602+1.2153� 10ÿ58 dÿ1DtJ2000
Inclination i 18.8497ÿ2.23� 10ÿ78 dÿ1DtJ2000

a The longitude of the ascending node of the Mars orbit O is measured along the ecliptic from the Earth's vernal equinox, while the longitude

of perihelion $ is measured along two di�erent planes, from the Earth's vernal equinox along the ecliptic to the orbital ascending node, and

then from this node along the orbit. $, O, and i are each referenced here with respect to the ®xed equinox and ecliptic of J2000.
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of LS with (4) than the quadratic dependence of M,
approaching 08.001 over centennial intervals.

As recognized by Meeus (1964), the Mars tropical
orbit period is shortened with respect to the sidereal
revolution by an amount directly related to the pla-
net's precession rate, and a quite accurate (if largely
uncredited) value of the Mars tropical orbit period
was noted by R. H. Norton in 1967, as reported in the
Mars Scienti®c Model (JPL-D-606-1) compiled by
Michaux and Newburn (1972). SuraÂ n (1997) recovered
a similarly accurate estimate of the Mars tropical years
as 686.972577778d, deriving this from the planet's side-
real orbit period and the modeled polar precession rate
of Hilton (1991). Although speci®ed to an unrealistic
precision, this evaluation is consistent to the nearest
ten-thousandth day with the determination of the
FMS rate in this study.

An approximate but direct corroboration of the
angular placement of the new FMS calibration is
a�orded by the new determination of the planet's pre-
cessional ``node angle'' from the combined analysis of
Path®nder and Viking Lander radio tracking. As
analyzed by Folkner et al. (1997), the angle specifying
the position and precession of the Mars equinox as
measured along the planet's mean orbital plane
for the 1980 epoch from the J2000 ecliptic is
cJ2000=358.43777 (at JD 2451545) with dc/dt=
ÿ70.576/yr=ÿ5.762 � 10ÿ68/d. As projected back to
1980 January 1.0 (JD 2444239.5), this implies
c1980=358.47986, within 08.0002 of the value pre-
viously given by Yoder and Standish (1997) for the
same date (near the midpoint of the Viking Lander
data record). Now the angular displacement of the
dynamical mean sun from the planet's vernal equinox
corresponds to the sum of the argument of the peri-
helion ($ÿO) and the orbital mean anomaly, minus

the precessional node angle. As adjusted by a
mean solar aberration constant k = 08.0042 for
Mars, the evaluated angle for the right ascension of
the Fictitious Mean Sun at the 1980 epoch is
aFMS(1980)=M1980+($ÿO)1980ÿc1980ÿk = 428.0226,
using the mean elements given in Table 2, and as pro-
jected to J2000 (JD 2451545), with ntropDtJ2000=
38288.3625 4 2288.3625 (reset by subtraction of 10 �
3608), aFMS(J2000) 41 2708.385. This direct estimate
is in fair agreement with the ®tted calibration of Eq.
(12), but su�ers from a somewhat sensitive dependence
upon the adopted mean orbital elements, and therefore
uncertain by an amount comparable to the di�erence
between various evaluations of the ®tted Mars mean
anomaly or at least 008.001. (The sensitivity of this
method to the mean element representation could pre-
sumably be eliminated by reference to a su�ciently
accurate orientation of the adopted mean orbit planes,
essentially equivalent to the high-precision de®nition of
the planet's pole vector with respect to the ®xed J2000
Earth equinox and ecliptic.)

The new FMS evaluation presented here implies a
Mars tropical orbit period ttrop=3608/ntrop=
686.97256d and by (7) and (8), LSP=2508.999, with
nSP=1.765 � 10ÿ58 dÿ1. Other speci®c estimates of
either the Mars tropical orbit period or the corre-
sponding FMS rate, as distinct from the rates for the
planet's sidereal and anomalistic motions, are curiously
di�cult to ®nd in the accessibly published literature.
Similarly, tabulations of Mars astrometric constants
have rarely included an accurate evaluation of LSP,
with a value of 2488, as adopted by Levine et al.
(1977), still appearing in recent application studies (e.g.
Franc° ois et al., 1990; Atkinson and Gwynne, 1992;
Badescu, 1998), though this appears to derive from the
much older pole vector estimate of Lowell. Harvey

Table 3

A selected history of areocentric mean solar coordinate evaluationsa

Author(s) FMS formula [Implied] aFMS (J2000) Tropical orbit period

Norton (1967) in

Michaux and Newburn (1972)

± ± 668.59216sol [=686.9726d]

Beerer (1985) in Kaplan (1988) ÿ2[3]88.217+0.5240418 dÿ1 (tÿt0) [2708.397] 686.969d

for t0=JD 2449200.5

Blume (1986) 2508.9882+0.52404278 dÿ1 (tÿt0) [2708.4019] 686.9669d

for t0=JD 2448760.08620

Lee (1995) 1888.3690+0.52404298 dÿ1 (tÿt0) [2708.3992] 686.9667d

for t0=JD 2450701.5

Allison (1997) 2708.39+0.52403848 dÿ1 (tÿt0) 2708.39 686.9725d

for t0=JD 2451545.0

SuraÂ n (1997) ± ± 686.97258d

Allison and McEwen (this work) 2708.3863+0.524038408 dÿ1 (tÿt0) 2708.3863 (208.0004) 686.97256d (20.00005d)

ÿ4� 10ÿ138 dÿ2 (tÿto)2 for t0=JD 2451545.0

a Although some authors have preferred to retain the full precision of their arithmetic, the angular results as given here are rounded to the

nearest ten-thousandth degree, with the corresponding epochs and evaluated estimate of the implied tropical year rounded to the nearest hun-

dred-thousandth day.
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(1982), however, presented a moderately accurate esti-
mate of LSP for the planets (with ÿ1098.0 for Mars),
as inferred from the osculating elements for the start
of 1981, referring to this angle as the longitude of peri-
helion converted to ``its value in each planet's natural
coordinate system''.

Table 3 presents a selected outline of various Mars
FMS/tropical orbit period evaluations, summarizing
the history of di�erent ®tting methods and available
data. The JPL de®nitions of the FMS appear to have
excluded solar aberration and have been calibrated in
application to speci®c Mars ¯ight projects. Of the
di�erent studies listed, only the present work has had
the bene®t of the new Path®nder pole vector, as evalu-
ated by Folkner et al. (1997). Their estimated (35 mas/
yr) uncertainty in the Mars precession rate implies an
uncertainty for the derived FMS rate 04 � 10ÿ88 dÿ1

and a corresponding uncertainty for the mean tropical
period of00.00005d.

The evaluated tropical year is also required for the
most accurate speci®cation of the planet's mean solar
day. In the course of one solar (tropical) orbit, a pla-
net completes one less solar rotation than the total
number of sidereal rotations, so that the mean solar
day or ``sol'' (dsol) relates to the sidereal day (dsid) as
ttrop/dsol0ttrop/dsidÿ1. Equivalently,

dsol � dsid

1ÿ dsid=ttrop

: �13�

Unfortunately, SuraÂ n made a small error in his esti-
mate of the Mars solar day as dsid � d 2

sid=ttrop �
1:027488966d, really an imperfect approximation to
dsid(1ÿdsid/ttrop)ÿ1. With dsid=3608/(3508.8919852/
d)=1.025956748d, as determined by Folkner et al.
(1997), the correct value for dsol=1.02749125d implies
a Mars tropical year of 668.5921 Mars solar days or
``sols''.

Our calculation of the maximum solar declination
for each orbit also a�ords an evaluated ®t to the
current Mars mean obliquity of date as
E=258.1919+08.0126 T (to within an estimated
uncertainty of 208.0001), where again T is measured
in Julian centuries post-J2000. This implies that in
1980, at T=ÿ0.2, E(1980) 1 258.1894, in good agree-
ment with the value of 258.189417 established by Fol-
kner et al. (1997), as referred to a ®xed 1980 Mars
mean orbit and equinox. (The inferred centennial rate
for the mean obliquity of date should not be confused
with the dE/dt 1 1 mas/yr reported in their paper,
which as they note is consistent within observational
limits with a vanishing value for a ®xed orbital refer-
ence plane.) The derived centennial rate is roughly
comparable to the pre-Viking value of dE/dt =
08.01220+08.00006 T given by Sturms (1970), as
reported in Michaux and Newburn (1972). T
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Table 4 summarizes the derived and related Mars
orbital/rotational parameters, including for compari-
son the corresponding values for Earth. There is as
yet some uncertainty in the precise location of the
crater Airy-0 de®ning the Mars prime meridian, as
apparent in the ongoing revision of its (angle W )
de®nition by Davies et al. (1996, 1999). The
adopted value for Vm, measured with respect to the
planet's equinox (cf Michael, 1979; Folkner et al.,
1997) represents a compromise between extreme
values, consistent with a recomputation of the Viking
control point network by Zeitler and Oberst (1999).

By a numerical evaluation of (9) with the parameters
speci®ed in Table 4, the Modi®ed Julian Date of sea-
son LS within the nth orbit of Mars since the epoch
1874.0 may be estimated for any subsequent date as

MJD�n, LS� � 51507:5� 1:90826�LS ÿ 2518�

ÿ20:42 sin�LS ÿ 2518� � 0:72sin�2�LS ÿ 2518��

� �686:9726� 0:0043 cos�LS ÿ 2518�

ÿ 0:0003cos�2�LS ÿ 2518��	Integer Part�nÿ 66�:

�14�

The last term in the brackets multiplying the orbit
index n ÿ 66 indicates the variation in the average rep-
etition interval for a Mars season LS, as plotted in Fig.
3. It may be readily veri®ed that the indicated vari-
ation for the repetition of the equinoxes and solstices
is consistent with the repetition of seasonal dates listed
in the Appendix. A computer-encoded rendition of this
equation, looped through LS=0, 90, 180, and 2708

and n = 0, 1, 2, . . . , 134, e�ciently recovers the dates
derived from the VSOP87 representation, as tabulated
in the Appendix, to within a maximum error of 0.1d.

7. Mars solar timing algorithms

The following algorithm, including the primary per-
turbations of Jupiter, Earth, and Venus, a�ords a
quick calculation of Mars solar coordinates. As refer-
enced to the elapsed time in days from the J2000
epoch (2000 January 1.5TT) with

DtJ2000 � �JDTT ÿ 2451545:0� �15�
(where JD is the Julian Date in Terrestrial Time, o�set

Table 5

Primary short-term perturbations for the areocentric solar longitude,

represented in the form Ai cos[(3608/365.25)DtJ2000/ti+fi], as ap-

proximated by a moderate-precision transformation of the associated

sine and cosine terms given by Simon et al. (1994) and plotted in

Fig. 2a

i Ai (8) ti (Jyr) fi (8) Planetary commensurability

1 0.007 2.2353 49.409 (lMÿlJ)ÿ1
2 0.006 2.7543 168.173 (lMÿ2lJ)ÿ1
3 0.004 1.1177 191.837 (2lMÿ2lJ)ÿ1
4 0.004 15.7866 21.736 (2lMÿlE)ÿ1
5 0.002 2.1354 15.704 (lEÿlM)ÿ1

6 0.002 2.4694 95.528 (2lEÿ3lM)ÿ1

7 0.002 32.8493 49.095 (lVÿ3lM)ÿ1

a The right-most column identi®es the planetary commensurability

responsible for each perturbation, in terms of the indicated di�er-

ences of integral multiples of mean motion rates for Jupiter (lJ),
Mars (lM), Earth (lE), and Venus (lV).

Fig. 3. Variation of the Mars solar seasonal year, shown as the mean interval in days and sols for the repetition of a given LS. The dashed hori-

zontal line represents the average tropical year, 686.9726d or 668.5921sol, corresponding to the interval for the repetition of the Fictitious Mean

Sun angle.
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from Universal Coordinated Time as prescribed
below), the mean anomaly, Fictitious Mean Sun angle,
and the sum of the angular perturbations in longitude,
are given as

M � 198:3870� 08:52402075DtJ2000 �16�

aFMS � 2708:3863� 08:52403840DtJ2000 �17�

PBS �
X7
i�1

Ai cos�08:985626DtJ2000=ti � fi � �18�

where Ai, ti, and fi denote the amplitude, period, and
phase of the planetary perturbations given in Table 5.
Then the areocentric solar longitude and equation of
time are given as

LS � aFMS � �108:691� 38� 10ÿ7DtJ2000� sin M

� 08:623 sin 2M� 08:050 sin 3M

� 08:005 sin 4M� 08:0005 sin 5M� PBS �19�

and

EOT � 28:861 sin 2LS ÿ 08:071 sin 4LS

� 08:002 sin 6LS ÿ
��108:691� 38

� 10ÿ7DtJ2000� sin M� 08:623 sin 2M

� 08:050 sin 3M� 08:005 sin 4M

� 08:0005 sin 5M� PBS
	
: �20�

The given EOT expression is of a similar form to that
presented by Yallop and Hohenkerk (1992) for the
Earth±Solar ephemeris. Although the apparent redun-
dancy of (19) and (20) can be avoided with an appro-
priate encoding of substituted variables, the given
form for the EOT assures a result in the plus or minus
small angle range for any multiple 3608 addition/sub-
traction to LS. For most purposes, however, it is con-
venient to reset the areocentric longitude to within the
0±3608 range, as for example

LS4FractionalPart

�
1� FractionalPart

�
LS

3608

��
3608 � Mod�LS, 3608�:

�21�

The Mean Solar Time on the Mars prime meridian,
given as (VmÿaFMS) � (24 h/3608)+12 h 4
Mod[14.8726 h+23.35786312 h DtJ2000, 24 h] may be
consistently evaluated as

MST � 24 h � FractionalPart

�
JDÿ 2451549:5

1:02749125

� 44796:0ÿ k

�
,

with k10:0007220:0001

�for JD in Terrestrial Time�:

�22�

As de®ned, consistent with the terrestrial convention
for Mean Solar Time, JD 2451549.5 (2000 January 06
00:00:00) corresponds to a near coincidence of the ter-
restrial Greenwich mean solar midnight and the Mar-
tian mean solar (prime meridian) midnight. The
addition of the integer number 44796 assures a positive
result for the indicated fractional part in (22) for any
date since JD 2405522 (1873 December 29.5). More
signi®cantly, the interval between these dates,
(2451549.5ÿ2405522.0)d=46027.5d=44796.002sol, rep-
resents not only a near half-day/sol commensurability,
but also a very near orbit-period commensurability of
JY2000.012ÿJY1873.996=126.016Jyr=67.0005 Mars
tropical revolutions (approximately 59 synodic
periods).

The Local True Solar Time is then given as

LTST � MSTÿ LW�24 h=3608� � EOT � �h=158� �23�
where LW denotes the west longitude (measured west-
ward from the prime meridian according to the plane-
tary cartographic convention in the range 0±3608).
Each hour-angle can be reset to 0±24 h as, for
example,

LTST4Mod�LTST, 24�, �24�
and then converted as desired from fractional hours to
minutes (and seconds).

The Mars heliocentric distance and ecliptic longi-
tude are numerically given from Eqs. (10) and (11)
as

r=a11:5236�1:00436ÿ 0:09309 cos M

ÿ 0:00436 cos 2Mÿ 0:00031 cos 3M �AU �25�

and

leclip20001LS � 858:061ÿ 08:015 sin�2LS � 718�

ÿ 58:5� 10ÿ6DtJ2000: �26�

For the most precise calculation of the solar hour-
angle, the Julian Date (JD) and the elapsed time
DtJ2000 as de®ned by (15) for the given timing formulae
should be referred to Terrestrial (Dynamical) Time
(TT), or Ephemeris Time (ET) as used prior to 1984,
measured in continuous even increments of SI s, cur-
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rently de®ned with reference to atomic clocks (with
TT=TAI+32.184 s). An approximate conversion of
the Universal (Coordinated) Time (UTC), as used by
space tracking centers for mission sequencing, to Ter-
restrial Time may be prescribed as

TT1UTC� 64:184 s� 95 s T� 35 s T 2, �27�

where T 0 (JD ÿ2451545)/36525=(Jyrÿ2000)/100 is
the elapsed time in Julian centuries from J2000. This is
accurate to within 5 s for the years 1950±2000, and to
within 11 s for the two-century interval 1800±2000.
Although a precise UTC conversion cannot be pre-
dicted several years in advance, the formula agrees to
within 2 s of extrapolated values for the years 1997±
2003, spanning the operation of the Mars Path®nder,
Global Surveyor, Polar Lander and Surveyor 2001
missions, and is exact for J2000, at T = 0. UTC is
itself stepped by 1 s increments with respect to TAI,
wherever needed at the end of June and/or December,
to bring civil time-keeping to within 0.9 s of UT1,
representing the exact measure of the Earth's rotation
as corrected for polar motion. Although the small
di�erence UT1±UTC is only available post facto, an-
ticipated adjustments to UTC are announced every six
months by the Central Bureau of the International
Earth Rotation Service at the Paris Observatory.

Omitting the perturbations (taking PBS=0), the
given LS formula (19), as derived from Eqs. (1), (2),
and (4), yields a result with a maximum error of 08.03,
comparable to the sum of the tabulated perturbation
amplitudes. The errors in LS, as calculated by the
given series expansion both with and without the pri-
mary perturbation corrections, are shown in Fig. 4, as
evaluated by comparison with the more accurate
VSOP87 ephemeris. As the lower panel suggests, ap-
proximately 95% of the values calculated with the in-
clusion of the seven-term perturbation correction for
the equinox and solstice dates are within 08.005 of the
accurately computed values given in Table A1. The ac-
curacy of the LS algorithm is therefore comparable to
its tabulation in the Astronomical Almanac, which dif-
fers, however, in its assumption of the older IAU pole
vector and the inclusion of a light-time correction.
(The calculation of LS to within a maximum error of
08.001 would require some 70 perturbation terms!)

Since the error in the calculated EOT (expressed in
degrees) as derived by the series method is comparable
to that for the LS, the 08.01 precision of the given
seven-term perturbation corrections, if included, would
enable the evaluation of the LTST to within 2.4 s.
Even without the perturbation corrections, the esti-
mated maximum error of 08.03 for the short series rep-
resentation of the elliptic motion over 2125 yr would

Fig. 4. Errors in the Mars LS (in degrees) for each equinox and solstice over2126 yr of J2000, as evaluated by the series expression (19) in com-

parison with the more exact calculation with the truncated VSOP87 representation, itself accurate to within 08.001. The upper plot shows the

errors excluding the perturbation corrections. The lower plot shows the reduced errors including the perturbations for the seven-term cosine

series with the amplitudes, phases, and periods given in Table 3, for which the maximum di�erence is 08.0074.
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imply an astrometric contribution to the LTST error
never larger than 8 s.

8. Lander solar timing

According to Colburn et al. (1989), the Viking
``Local Lander Time'' or LLT was de®ned so that the
Sun would cross the nadir meridian at midnight on the
®rst sol, but otherwise took no account of the sub-
sequent progression of the Equation of Time (EOT).
Viking LLT was therefore a variant of mean solar
time, o�set by approximately ÿ2.88 and ÿ14.69 h
from the MST on the Mars prime meridian for Viking
Landers 1 and 2, respectively (cf Allison, 1997). Viking
Lander ``Sol numbers'' were essentially reckoned from
a zero starting point at each of the local true solar
midnights immediately prior to their touchdowns.
Time tags for the Mars Path®nder Lander were refer-
enced with respect to the local true solar time, with
elapsed sols reckoned from the local true solar mid-
night preceding its landing, but designated with a start-
ing number ``1'' rather than zero. Table 6 gives the
exact times for the Viking and Mars Path®nder land-
ings, along with estimated epochs for their ``nominal''
local midnights, as usefully referenced for the calcu-
lation of their mission sol number and Local True
Solar Time.

The Viking 1 ``sol number'', for example, is readily
evaluated as

VL1 Sol No: � IntegerPart��JDUTC

ÿ 2442979:321�=1:02749125�, �28�

and with an appropriately speci®ed decimal fraction
for the Julian Date corresponding to a particular ter-
restrial calendar date and time, the VL1 ``Local
Lander Time'' (in hours) can be e�ciently estimated as

VL1 LLT � 24h � FractionalPart��JDUTC

ÿ 2442979:321�=1:02749125�: �29�

As mentioned by Allison (1997), small di�erences in
the adopted Viking LLT conversions are apparent
among di�erent data archives. The numerical cali-
bration of the formula given here, accounting for the
recent re-evaluation of the Viking Lander longitudes
(e.g. Zeitler and Oberst, 1999), as well as the Mars ro-
tation parameters from Path®nder, may imply di�er-
ences as large as 2 or 3 min with respect to the LLT
tabulations in Colburn et al. (1989).

A Mars Path®nder ``sol date'', as referenced to the
Local True Solar Time, may be calculated as

MPF TSD � JDUTC ÿ 2450634:10048

1:02749125
� EOT

3608
� 1, �30�

with EOT evaluated by Eq. (20) for the exact time of
interest and then converted as indicated from degrees
to the appropriate decimal sol fraction. The Path®nder
Local True Solar Time is then readily computed as

MPF LTST � 24h � Fractional Part�MPF TSD�: �31�
The evaluated decimal hour angle for the Landers may
be converted to hours, minutes and seconds, consistent
with the spacecraft data records generated for these
missions at the Jet Propulsion Laboratory (e.g.
Golombek, 1997).

9. Discussion

The new calibration of the Fictitious Mean Sun at
Mars presented here, as speci®ed to within an esti-
mated accuracy of 208.0004, would serve to de®ne a
Martian ``Mean Solar Time'' (MST) consistent with
the historical conventions established for terrestrial
chronology to within (08.0004/3608) � 86400 s 1 0.1 s
on a 24 h clock, once the position of the planet's
prime meridian is determined to the same precision. Of
course the Local True Solar Time (LTST), as might be
preferred for the timing of scienti®c observations and
the motorized tracking of solar power arrays, can be

Table 6

Mars Lander epochsa

Touchdown date/time Sol number epoch

Viking Lander 1 1976 Jul 20 11:53:06 UTC=JD 2442979.99521 UTC VL1 Sol 0.0 (LTST midnight) JD 2442979.321 UTC

Viking Lander 2 1976 Sep 03 22:37:50 UTC=JD 2443025.44294 UTC VL2 Sol 0.0 (LTST midnight) JD 2443025.033 UTC

Mars Path®nder 1997 Jul 04 16:56:55 UTC=JD 2450634.20619 UTC MPF Sol 1.0 (LMST midnight) JD 2450634.10046 UTC

a Times for the Viking Lander touchdowns are from Snyder (1977), while the time for the Path®nder landing is from Golombek et al. (1997).

The sol number epochs for the Vikings are speci®ed by Julian Dates approximately coincident with the local true solar midnight at each touch-

down. The given Path®nder epoch corresponds instead to its initial local mean solar midnight, as conveniently referenced for the calculation of

the Local True Solar Time by an augmentation of the variable EOT. Owing to the small variation of TTÿUTC over the extent of each mission,

the given Julian Dates are conveniently referenced to Universal Coordinated Time.
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evaluated independently of an FMS or MST, given the
local longitude and an accurate determination of the
true solar right ascension. With the slow sol-to-sol
variation of the equation of time, at most some 40 s
(cf Allison, 1997), conceivably both human and ma-
chine activities on Mars could be reckoned with
respect to the variably advancing LTST, or a globally
synchronized TST (e.g. an ``Airy True Solar Time'' on
the prime meridian).

Even if the use of MST on Mars were to be entirely
abandoned, however, it seems unlikely that the Perma-
nent Read-Only-Memory (PROM) of every instrument
timer and clock on the planet would in this case be
equipped with a complete numerical solar-system ephe-
meris for the calculation of the true solar ascension
and LTST at each instant. It would be relatively easy,
however, to encode the PROM of any digital clock
with a solar timing algorithm of the simple form pre-
sented here, as calibrated with respect to the FMS for-
mula. The estimated 03 s accuracy of the given
expression for the equation of time (08 s excluding the
planetary perturbations) would appropriately serve the
long-term stability of many quartz clocks (e.g. typically
a few seconds per month).

Measurements by Lander radio tracking of a very
small seasonal modulation of the Mars rotation (02
milli-arcsec for its angular measure), as attributed to
the sublimation of the polar caps, have been modeled
using the orbital mean anomaly as the dependent vari-
able (Yoder and Standish, 1997; Folkner et al., 1997).
aFMS or some rede®ned angle advancing at the FMS
rate is likely to be a more appropriate dependent vari-
able, however, for the measured or modeled Mars sur-
face pressure, condensed CO2, water vapor
distribution, or any other climatological ®eld governed
by the solar season. The accurately referenced FMS
rate provides the most accurate representation of the
solar seasonal year on Mars and, together with the
planetary rotation with respect to the Mars equinox,
the most accurate determination of the length of the
mean solar day.

The desirability of some coherent system for the
chronological reckoning of Mars solar days, logically
extending the repeated sequential numbering post-
touchdown for each landed spacecraft mission, is
already apparent. Gangale (1997), Hartmann (1997),
SuraÂ n (1997), and others have already gone so far as
to propose various Mars calendar systems, inevitably
involving the consideration of various social conven-
tions as to the organization of week days and the
peculiar matter of month names. For scienti®c pur-
poses, however, including the maintenance of climato-
logical records and space¯ight mission planning, it
seems desirable to adopt some extended sol-number
system for Mars analogous to the Julian Date chronol-
ogy. Such a ``Consecutive Mars Day'' system was actu-

ally proposed by Norton (in 1967, reported in the JPL
document prepared by Michaux and Newburn, 1972),
as referred to a ``Mars Year 1000'' coincident with the
Mariner 4 ¯yby, and calibrated with respect to Low-
ell's pole vector.

For historical utility with respect to the Earth-based
atmospheric, visual mapping, and polar-cap obser-
vations of Mars (e.g. Zurek and Martin, 1993), a
sequential count of sol-numbers might appropriately
be started prior to the 1877 perihelic opposition.
Although the initial epoch for such a system can be
regarded as largely arbitrary, it might be of some com-
putational facility to select as a convenient starting
point a near coincidence of Earth±Mars mean solar
midnights, as de®ned for each of their cartographic
prime meridians. Two such near-alignments are built
into the mean solar timing expression given by (22).
As extended in an obvious way for the representation
of a ``Mars Sol-Date'' (MSD) and referring this to the
Modi®ed Julian Date (MJD=JD ÿ2400000.5),

MSD � MJDÿ 51549:0

1:02749125
� 44796:0ÿ k, �32�

where again k is a small (<0.001sol) timing adjustment
to the inertial position of the crater Airy-0 de®ning the
Mars prime meridian. The interval between MSD 0.0
1 MJD 05521.5 (1873 December 29.5) and MSD
44796.0 1 MJD 51549.0 (2000 January 6.0) represents
both a half-day/sol commensurability and an orbital
commensurability of 126Jyr 1 67 Mars tropical revolu-
tions. As may be veri®ed with Eqs. (15)±(19), MSD 0
corresponds to a Mars LS=2778.13, nearly the same
as the Earth LS (2778.9) at the same epoch, and by Eq.
(26) a Mars ecliptic longitude 2827 '. MSD 44796.0 cor-
responds to a Mars LS=2778.19 and ecliptic longitude
2815 '.

Since the estimated value for k in (32), as converted
to seconds, is very nearly the same as the di�erence
TÿUTC at J2000, MJD 51549.0 UTC=2000 January
6 00:00:00 UTC coincides with mean solar midnight
on the Mars prime meridian to within an estimated
uncertainty of some 210 s. Or, with MJD given in
UTC, Eq. (32) may be conveniently used to good ap-
proximation with k 1 0 for current epochs (near
J2000), with the Mean Solar Time on the Mars prime
meridian then simply given as 24 h � FractionPart
[MSD]. With the appropriate choice of coordinates,
Mars seasonal/solar timing is therefore readily calcu-
lated with a simple set of formulae.
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Table A1

Mars equinox, solstice, and perihelion dates

Revs post-1874.0 Julian year interval Modi®ed Julian Date (MJD=JD ÿ2400000.5) for Mars

Vernal equinox N. Summer solstice Autumnal equinox N. Winter solstice Perihelion

0 1874±1875 5668.690 5867.478 6050.555 6197.109 6165.88

1 1875±1877 6355.680 6554.453 6737.532 6884.078 6852.73

2 1877±1879 7042.670 7241.422 7424.526 7571.060 7539.80

3 1879±1881 7729.641 7928.391 8111.472 8258.049 8226.86

4 1881±1883 8416.619 8615.380 8798.441 8944.979 8913.61

5 1883±1885 9103.578 9302.345 9485.453 9631.969 9600.75

6 1885±1887 9790.520 9989.291 1 0172.415 1 0318.974 1 0287.89

7 1887±1889 1 0477.503 1 0676.246 1 0859.356 1 1005.929 1 0974.73

8 1889±1890 1 1164.490 1 1363.218 1 1546.338 1 1692.879 1 1661.66

9 1890±1892 1 1851.446 1 2050.195 1 2233.321 1 2379.887 1 2348.85

10 1892±1894 1 2538.414 1 2737.176 1 2920.290 1 3066.853 1 3035.67

11 1894±1896 1 3225.407 1 3424.152 1 3607.299 1 3753.824 1 3722.69

12 1896±1898 1 3912.353 1 4111.104 1 4294.273 1 4440.832 1 4409.88

13 1898±1900 1 4599.323 1 4798.058 1 4981.214 1 5127.803 1 5096.80

14 1900±1902 1 5286.315 1 5485.026 1 5668.185 1 5814.749 1 5783.63

15 1902±1904 1 5973.284 1 6171.997 1 6355.167 1 6501.737 1 6470.78

16 1904±1905 1 6660.246 1 6858.973 1 7042.112 1 7188.701 1 7157.66

17 1905±1907 1 7347.227 1 7545.969 1 7729.121 1 7875.653 1 7844.55

18 1907±1909 1 8034.173 1 8232.933 1 8416.143 1 8562.688 1 8531.81

19 1909±1911 1 8721.147 1 8919.882 1 9103.091 1 9249.687 1 9218.85

20 1911±1913 1 9408.152 1 9606.848 1 9790.042 1 9936.629 1 9905.64

21 1913±1915 2 0095.129 2 0293.822 2 0477.027 2 0623.597 2 0592.70

22 1915±1917 2 0782.081 2 0980.790 2 1163.978 2 1310.583 2 1279.73

23 1917±1919 2 1469.058 2 1667.775 2 1850.956 2 1997.519 2 1966.51

24 1919±1921 2 2156.017 2 2354.735 2 2537.965 2 2684.513 2 2653.68

25 1921±1922 2 2842.963 2 3041.686 2 3224.924 2 3371.515 2 3340.80

26 1922±1924 2 3529.946 2 3728.655 2 3911.887 2 4058.485 2 4027.67

27 1924±1926 2 4216.936 2 4415.623 2 4598.881 2 4745.458 2 4714.65

28 1926±1928 2 4903.911 2 5102.590 2 5285.838 2 5432.453 2 5401.78

29 1928±1930 2 5590.883 2 5789.575 2 5972.792 2 6119.388 2 6088.54

30 1930±1932 2 6277.851 2 6476.549 2 6659.807 2 6806.362 2 6775.59

31 1932±1934 2 6964.791 2 7163.498 2 7346.783 2 7493.375 2 7462.78

32 1934±1936 2 7651.767 2 7850.452 2 8033.722 2 8180.343 2 8149.69

33 1936±1937 2 8338.761 2 8537.424 2 8720.696 2 8867.287 2 8836.53

34 1937±1939 2 9025.727 2 9224.405 2 9407.687 2 9554.288 2 9523.71

35 1939±1941 2 9712.689 2 9911.387 3 0094.654 3 0241.272 3 0210.60

36 1941±1943 3 0399.689 3 0598.372 3 0781.659 3 0928.229 3 0897.52

37 1943±1945 3 1086.641 3 1285.328 3 1468.648 3 1615.237 3 1584.72

38 1945±1947 3 1773.600 3 1972.280 3 2155.592 3 2302.219 3 2271.72

39 1947±1949 3 2460.591 3 2659.244 3 2842.553 3 2989.166 3 2958.53

40 1949±1951 3 3147.566 3 3346.212 3 3529.538 3 3676.143 3 3645.64

41 1951±1952 3 3834.524 3 4033.180 3 4216.482 3 4363.122 3 4332.62

42 1952±1954 3 4521.504 3 4720.174 3 4903.471 3 5050.060 3 5019.43

43 1954±1956 3 5208.456 3 5407.144 3 5590.500 3 5737.080 3 5706.65

44 1956±1958 3 5895.414 3 6094.088 3 6277.459 3 6424.091 3 6393.76

45 1958±1960 3 6582.415 3 6781.048 3 6964.400 3 7111.039 3 7080.58

46 1960±1962 3 7269.398 3 7468.021 3 7651.382 3 7797.994 3 7767.55

47 1962±1964 3 7956.351 3 8154.988 3 8338.343 3 8484.989 3 8454.67

(continued on next page)
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Table A1 (continued )

Revs post-1874.0 Julian year interval Modi®ed Julian Date (MJD=JD ÿ2400000.5) for Mars

Vernal equinox N. Summer solstice Autumnal equinox N. Winter solstice Perihelion

48 1964±1966 3 8643.323 3 8841.971 3 9025.306 3 9171.928 3 9141.44

49 1966±1968 3 9330.293 3 9528.942 3 9712.319 3 9858.909 3 9828.52

50 1968±1969 4 0017.237 4 0215.896 4 0399.290 4 0545.917 4 0515.68

51 1969±1971 4 0704.215 4 0902.864 4 1086.248 4 1232.895 4 1202.59

52 1971±1973 4 1391.209 4 1589.836 4 1773.242 4 1919.863 4 1889.49

53 1973±1975 4 2078.191 4 2276.808 4 2460.216 4 2606.860 4 2576.66

54 1975±1977 4 2765.159 4 2963.788 4 3147.160 4 3293.810 4 3263.48

55 1977±1979 4 3452.135 4 3650.770 4 3834.170 4 3980.768 4 3950.43

56 1979±1981 4 4139.076 4 4337.719 4 4521.159 4 4667.783 4 4637.65

57 1981±1983 4 4826.043 4 5024.668 4 5208.097 4 5354.763 4 5324.63

58 1983±1984 4 5513.039 4 5711.634 4 5895.058 4 6041.703 4 6011.43

59 1984±1986 4 6200.011 4 6398.614 4 6582.050 4 6728.688 4 6698.56

60 1986±1988 4 6886.965 4 7085.591 4 7269.018 4 7415.685 4 7385.55

61 1988±1990 4 7573.959 4 7772.575 4 7956.009 4 8102.632 4 8072.39

62 1990±1992 4 8260.920 4 8459.533 4 8643.008 4 8789.632 4 8759.59

63 1992±1994 4 8947.868 4 9146.482 4 9329.956 4 9476.625 4 9446.65

64 1994±1996 4 9634.854 4 9833.442 5 0016.907 5 0163.575 5 0133.47

65 1996±1998 5 0321.836 5 0520.413 5 0703.893 5 0850.540 5 0820.48

66 1998±2000 5 1008.795 5 1207.382 5 1390.848 5 1537.531 5 1507.56

67 2000±2001 5 1695.773 5 1894.376 5 2077.819 5 2224.466 5 2194.32

68 2001±2003 5 2382.737 5 2581.358 5 2764.856 5 2911.471 5 2881.46

69 2003±2005 5 3069.686 5 3268.306 5 3451.834 5 3598.497 5 3568.65

70 2005±2007 5 3756.684 5 3955.264 5 4138.774 5 4285.458 5 4255.52

71 2007±2009 5 4443.676 5 4642.236 5 4825.750 5 4972.406 5 4942.41

72 2009±2011 5 5130.635 5 5329.204 5 5512.721 5 5659.403 5 5629.58

73 2011±2013 5 5817.601 5 6016.182 5 6199.670 5 6346.353 5 6316.38

74 2013±2015 5 6504.580 5 6703.159 5 6886.679 5 7033.314 5 7003.35

75 2015±2016 5 7191.524 5 7390.111 5 7573.661 5 7720.323 5 7690.55

76 2016±2018 5 7878.490 5 8077.073 5 8260.613 5 8407.306 5 8377.53

77 2018±2020 5 8565.481 5 8764.042 5 8947.600 5 9094.272 5 9064.38

78 2020±2022 5 9252.467 5 9451.011 5 9634.581 5 9781.261 5 9751.54

79 2022±2024 5 9939.430 6 0137.983 6 0321.519 6 0468.226 6 0438.45

80 2024±2026 6 0626.407 6 0824.969 6 1008.513 6 1155.167 6 1125.30

81 2026±2028 6 1313.354 6 1511.924 6 1695.515 6 1842.176 6 1812.51

82 2028±2030 6 2000.309 6 2198.873 6 2382.461 6 2529.169 6 2499.55

83 2030±2031 6 2687.304 6 2885.838 6 3069.414 6 3216.112 6 3186.34

84 2031±2033 6 3374.285 6 3572.820 6 3756.409 6 3903.083 6 3873.39

85 2033±2035 6 4061.239 6 4259.801 6 4443.388 6 4590.096 6 4560.49

86 2035±2037 6 4748.227 6 4946.785 6 5130.369 6 5277.045 6 5247.28

87 2037±2039 6 5435.203 6 5633.752 6 5817.377 6 5964.037 6 5934.43

88 2039±2041 6 6122.148 6 6320.702 6 6504.335 6 6651.040 6 6621.56

89 2041±2043 6 6809.131 6 7007.659 6 7191.279 6 7337.998 6 7308.41

90 2043±2045 6 7496.121 6 7694.629 6 7878.259 6 8024.952 6 7995.33

91 2045±2047 6 8183.082 6 8381.596 6 8565.224 6 8711.945 6 8682.47

92 2047±2048 6 8870.052 6 9068.581 6 9252.178 6 9398.886 6 9369.25

93 2048±2050 6 9557.024 6 9755.568 6 9939.209 7 0085.868 7 0056.30

94 2050±2052 7 0243.964 7 0442.515 7 0626.202 7 0772.900 7 0743.53

95 2052±2054 7 0930.952 7 1129.467 7 1313.137 7 1459.872 7 1430.47

96 2054±2056 7 1617.948 7 1816.435 7 2200.101 7 2146.812 7 2117.30

97 2056±2058 7 2304.911 7 2503.405 7 2687.080 7 2833.799 7 2804.45
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Appendix. Mars season and perihelion dates

The accompanying Table A1 lists the Modi®ed

Julian Date for each instance of the vernal equinox,

northern summer solstice, autumnal equinox, and

northern winter solstice, along with the perihelion pas-

sage for each of 135 orbits of Mars spanning the years

1874±2127. These were calculated from the truncated

VSOP87 representation tabulated by Meeus (1991),

also using the new Mars pole vector derived from

Path®nder radio tracking data by Folkner et al. (1997)

for the evaluation of the seasonal passages. The Modi-

®ed Julian Date, equivalent to the Julian Date minus

2400000.5, a�ords the advantage of a shorter ®ve-digit

representation of the day number as compared with

Table A1 (continued )

Revs post-1874.0 Julian year interval Modi®ed Julian Date (MJD=JD ÿ2400000.5) for Mars

Vernal equinox N. Summer solstice Autumnal equinox N. Winter solstice Perihelion

98 2058±2060 7 2991.869 7 3190.377 7 3374.025 7 3520.764 7 3491.33

99 2060±2062 7 3678.851 7 3877.362 7 4061.025 7 4207.710 7 4178.20

100 2062±2063 7 4365.799 7 4564.320 7 4748.023 7 4894.717 7 4865.41

101 2063±2065 7 5052.757 7 5251.281 7 5434.980 7 5581.712 7 5552.45

102 2065±2067 7 5739.747 7 5938.252 7 6121.962 7 6268.684 7 6239.30

103 2067±2069 7 6426.742 7 6625.222 7 6808.951 7 6955.667 7 6926.39

104 2069±2071 7 7113.709 7 7312.193 7 7495.895 7 7642.650 7 7613.41

105 2071±2073 7 7800.688 7 7999.183 7 8182.873 7 8329.583 7 8300.18

106 2073±2075 7 8487.646 7 8686.146 7 8869.884 7 9016.582 7 8987.35

107 2075±2077 7 9174.594 7 9373.094 7 9556.840 7 9703.585 7 9674.45

108 2077±2079 7 9861.583 8 0060.053 8 0243.785 8 0390.535 8 0361.28

109 2079±2080 8 0548.570 8 0747.030 8 0930.772 8 1077.491 8 1048.24

110 2080±2082 8 1235.524 8 1434.009 8 1617.756 8 1764.505 8 1735.41

111 2082±2084 8 1922.500 8 2120.987 8 2304.722 8 2451.461 8 2422.21

112 2084±2086 8 2609.486 8 2807.959 8 2991.729 8 3138.435 8 3109.27

113 2086±2088 8 3296.427 8 3494.908 8 3678.697 8 3825.440 8 3796.44

114 2088±2090 8 3983.399 8 4181.861 8 4365.637 8 4512.406 8 4483.35

115 2090±2092 8 4670.390 8 4868.829 8 5052.610 8 5199.352 8 5170.20

116 2092±2094 8 5357.354 8 5555.799 8 5739.588 8 5886.342 8 5857.35

117 2094±2095 8 6044.317 8 6242.777 8 6426.536 8 6573.299 8 6544.20

118 2095±2097 8 6731.295 8 6929.772 8 7113.556 8 7260.264 8 7231.15

119 2097±2099 8 7418.239 8 7616.727 8 7800.570 8 7947.300 8 7918.40

120 2099±2101 8 8105.221 8 8303.678 8 8487.510 8 8634.290 8 8605.41

121 2101±2103 8 8792.223 8 8990.646 8 9174.466 8 9321.231 8 9292.21

122 2103±2105 8 9479.197 8 9677.621 8 9861.451 9 0008.206 8 9979.29

123 2105±2107 9 0166.153 9 0364.590 9 0548.400 9 0695.188 9 0666.28

124 2107±2109 9 0853.135 9 1051.578 9 1235.385 9 1382.126 9 1353.08

125 2109±2110 9 1540.092 9 1738.539 9 1922.393 9 2069.125 9 2040.26

126 2110±2112 9 2227.041 9 2425.496 9 2609.353 9 2756.128 9 2727.36

127 2112±2114 9 2914.027 9 3112.465 9 3296.324 9 3443.101 9 3414.23

128 2114±2116 9 3601.024 9 3799.432 9 3983.311 9 4130.072 9 4101.23

129 2116±2118 9 4287.992 9 4486.400 9 4670.263 9 4817.062 9 4788.34

130 2118±2120 9 4974.963 9 5173.385 9 5357.222 9 5503.994 9 5475.09

131 2120±2122 9 5661.928 9 5860.354 9 6044.237 9 6190.974 9 6162.18

132 2122±2124 9 6348.866 9 6547.301 9 6731.206 9 6877.984 9 6849.35

133 2124±2126 9 7035.845 9 7234.255 9 7418.146 9 7564.947 9 7536.24

134 2126±2127 9 7722.837 9 7921.228 9 8105.125 9 8251.894 9 8223.11
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the seven-digit string of a Julian Day number and has
been recommended by the International Astronomical
Union (1998) for use where it is convenient to employ
a day beginning at midnight (rather than Greenwich
noon). Conversions to/from the MJD or JD and a
given date in the terrestrial calendar may be deter-
mined from any of several established algorithms (e.g.
Van Flandern and Pulkkinen, 1979; Hatcher, 1984),
with 2000 January 1.0=MJD 51544.0.

The tabulated seasonal dates may be compared with
those given by Meeus (1995), as calculated with the
older IAU Mars pole vector, and including an adjust-
ment for the Earth±Mars light-travel time. Although
the seasonal passages have been tabulated to the near-
est thousandth day, the 08.001 accuracy of the trun-
cated VSOP87 representation used for their evaluation
may admit to errors occasionally as large as 20.002 d.
Perihelion dates have been rounded to the nearest hun-
dredth day, consistent with an estimated ®ve times lar-
ger (008.005) maximum error for their angular
placement.

The tabulated Mars revolution number corresponds
to a count of successive orbits (of 1.88083 Julian
Years) post-1874.0. The adopted orbital epoch pre-
cedes the ®rst observation of a Mars regional dust
storm during the perihelic opposition of 1877 (cf
Zurek and Martin, 1993) within the indicated ``Rev
1'', as well as the hand-drawn maps of the same era
bearing the ®rst antecedents for the modern carto-
graphic nomenclature (cf Glasstone, 1968). By the
same reckoning, J2000 occurs approximately six days
prior to the start of Rev 67.
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